Step of Proof: fseg_length
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
fseg
length
:
T
:Type,
l1
,
l2
:(
T
List). fseg(
T
;
l1
;
l2
)
(||
l1
||
||
l2
||)
latex
by ((((((((((Unfold `fseg` 0)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n
C
),(first_nat 3:n)) (first_tok :t) inil_term)))
)
CollapseTHEN (ExRepD))
)
CollapseTHEN (
C
HypSubst (-1) 0))
)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
)
CollapseTHEN (((RWO "length_append" 0)
CollapseTHEN (
C
(Auto_aux (first_nat 1:n) ((first_nat 2:n),(first_nat 3:n)) (first_tok SupInf:t) inil_term)))
))
C
latex
C
.
Definitions
fseg(
T
;
L1
;
L2
)
,
x
:
A
.
B
(
x
)
,
P
Q
,
P
&
Q
,
x
:
A
B
(
x
)
,
T
,
P
Q
,
P
Q
,
True
,
,
i
j
,
A
B
,
n
+
m
,
,
as
@
bs
,
type
List
,
Type
,
||
as
||
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
t
T
,
s
=
t
Lemmas
iff
wf
,
rev
implies
wf
,
le
wf
,
squash
wf
,
true
wf
,
length
append
,
non
neg
length
,
length
wf1
origin